I have the following situation:
I have a couple of microservices, only 2 are relevant right now. - Web Socket Service API - Dispatcher Service
We have 3 users that we'll call respectively 1, 2, and 3. These users connect themselves to the web socket endpoint of our backend. Our microservices are running on Kubernetes and each services can be replicated multiple times inside Pods. For this situation, we have 1 running container for the dispatcher, and 3 running containers for the web socket api. Each pod has its Load Balancer and this will be each time the entry point.
In our situation, we will then have the following "schema":
Now that we have a representation of our system (and a legend), our 3 users will want to use the app and connect.
As we can see, the load balancer of our pod forwarded the web socket connection of our users across the different containers. Each container, once it gets a new connection, will let to know the Dispatcher Service, and this one will save it in its own database.
Now, 3 users are connected to 2 different containers and the Dispatcher service knows it.
The user 1 wants to message user 2. The container A will then get a message and tell the Dispatcher Service: Please, send this to the user 2
.
As the dispatcher knows to which container the user 2 is connected, I would like to send a request directly to my Container instead of sending it to the Pod. Sending it to the Pod is resulting in sending a request to a load balancer which actually dispatches the request to the most available container instance...
How could I manage to get the container IP? Can it be accessed by another container from another Pod?
To me, the best approach would be that, once the app start, it gets the current container's IP and then send it within the register request to the dispatcher, so the dispatcher would know that ContainerID=IP
Thanks!
There is my web-socket-service-api.yaml
apiVersion: v1
kind: Service
metadata:
name: web-socket-service-api
spec:
ports:
# Port that accepts gRPC and JSON/HTTP2 requests over HTTP.
- port: 8080
targetPort: 8080
protocol: TCP
name: grpc
# Port that accepts gRPC and JSON/HTTP2 requests over HTTP.
- port: 8081
targetPort: 8081
protocol: TCP
name: rest
# Port that accepts WebSockets.
- port: 8082
targetPort: 8082
protocol: TCP
name: websocket
selector:
app: web-socket-service-api
type: LoadBalancer
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: web-socket-service-api
spec:
replicas: 3
template:
metadata:
labels:
app: web-socket-service-api
spec:
containers:
- name: web-socket-service-api
image: gcr.io/[PROJECT]/web-socket-service-api:latest
ports:
- containerPort: 8080
- containerPort: 8081
- containerPort: 8082
As how I understand your design, your Dispatcher is essentially a message broker for the pods of your Websocket Service. Let all Websocket pods connect to the broker and let the broker route messages. This is a stateful service and you should use a StatefulSet for this in Kubernetes. Depending on your requirements, a possible solution could be to use a MQTT-broker for this, e.g. mosquitto. Most MQTT brokers have support for websockets.
each services can be replicated multiple times inside Pods. For this situation, we have 1 running container for the dispatcher, and 3 running containers for the web socket api.
This is not how Kubernetes is intented to be used. Use multiple replicas of pods instead of multiple containers in the pod. I recommend that you create a Deployment for your Websocket Service with as many replicas you want.
Each pod has its Load Balancer and this will be each time the entry point.
In Kubernetes you should create a Service that load balance traffic to a set of pods.
Your solution
To me, the best approach would be that, once the app start, it gets the current container's IP and then send it within the register request to the dispatcher, so the dispatcher would know that ContainerID=IP
Yes, I mostly agree. That is similar to what I have described here. But I would let the Websocket Service establish a connection to the Broker/Dispatcher.
Any pod, has some information about itself. And one of the info, is it own IP address. As an example:
apiVersion: v1
kind: Pod
metadata:
name: envars-fieldref
spec:
containers:
- name: test-container
image: k8s.gcr.io/busybox
command: [ "sh", "-c"]
args:
- while true; do
echo -en '\n';
printenv MY_POD_IP;
sleep 10;
done;
env:
- name: MY_POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
Within the container, MY_POD_IP would contain the IP address of the pod. You can let the dispatcher know about it.
$ kubectl logs envars-fieldref
10.52.0.3
$ kubectl get po -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
envars-fieldref 1/1 Running 0 31s 10.52.0.3 gke-klusta-lemmy-3ce02acd-djhm <none> <none>
Note that it is not a good idea to rely on pod IP address. But this should do the trick.
Also, it is exactly the same thing to send a request to the pod or to the container.